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Abstract

An accurate closed-form analytical solution for the strain energy release rate for a thin rectangular film loaded by a

central line force using the pull-off test is derived in the presence of a tensile residual stress. The theoretical constitutive

relation and the strain energy release rate agree very well with two-dimensional nonlinear finite element analysis for the

entire deformation regime ranging from bending plate to stretching membrane. Fracture modes for this pull-off test are

also investigated based upon the finite element analysis, offering additional insights to the interfacial delamination.
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1. Introduction

In recent years, thin films and coatings have been increasingly used in many widely varying applications

such as automobiles, microelectronics, optical devices, and biomedical engineering. Although a thorough

understanding of mechanical properties and interfacial delamination is desired to ensure the reliability,
lifespan, and structural integrity of thin-film adhesion, it was not until the introduction of a fracture me-

chanics approach that interfacial adhesion was studied extensively and systematically. The general concepts

of interfacial fracture mechanics are related to the critical strain energy release rate (fracture energy), which

is the work per unit area required to separate the interface of interest. This parameter is widely used to

quantify interfacial adhesion because it is a function of both material properties, such as the interface

chemistry, adjacent microstructures, elastic–plastic constitutive behavior, and viscoelasticity; and
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mechanical parameters such as the loading mixity close to the debond tip (Dauskardt et al., 1998;

Hutchingson and Suo, 1992).

Many adhesion test techniques have been developed to measure adhesion energy at the interface, among

which blister and peel tests are two widely used methods to test adhesion of thin films and coatings. Blister
tests were originally proposed by Dannenberg (1961) for debonding a strip of coating into a cavity, and the

more common circular version was introduced by Williams (1972). The method was generalized to thinner

films by considering only membrane action (Bennett et al., 1974; Gent and Lewandowski, 1987; Williams,

1997) or a combination of bending and stretching (Cotterell and Chen, 1997; Sheplak and Dugundji, 1998;

Wan and Lim, 1998). Jensen and Thouless (1993) also incorporated residual stress effects into the energy

release rate and mode mixity determination in the blister test. In the standard or pressurized circular blister

test, either a liquid or gas is applied under pressure through a hole in the substrate, forcing the coating to

debond. The strain energy release rate can be calculated from the relationship between the pressure, blister
radius, and blister height. However, one disadvantage of the standard blister test is that the strain energy

release rate increases as the blister radius increases, which can lead to uncontrolled catastrophic debonding

(Lai and Dillard, 1994). Furthermore, the pressurized test, which requires a sophisticated experimental

setup to monitor the simultaneous change in pressure and blister dimension, suffers from the soft com-

pliance of the gaseous medium and possible dissolved gases (Wan, 1999). To circumvent the problem of

uncontrolled failure, many researchers have proposed some modified blister geometries, including the

‘‘constrained blister’’ (Chang et al., 1989), ‘‘island blister’’ (Allen and Senturia, 1989), ‘‘peninsula blister’’

(Dillard and Bao, 1991), and ‘‘stable pressurized blister test’’ (Wan and Mai, 1995a). It is also worthwhile to
mention that the ‘‘shaft-loaded blister test’’, which utilizes the controlled displacement of a spherically

capped shaft, driven, for example, by a universal testing machine, is an alternative to pressurized tests

because better compliance measurements can be obtained (Jennings et al., 1995; Wan, 1999). However, one

drawback of this technique is the large membrane stress in the vicinity of the blister center where the shaft is

applied, which leads to plastic yielding or even film rupture (Wan and Mai, 1995b; Wan and Mai, 1996).

Another common test that has also been used in a variety of configurations is the peel test, in which a

thin, flexible strip is pulled away at some angle from the underlying substrate. Peel tests are widely used for

measuring the adhesion of flexible thin films and coatings, and extensive work has already been docu-
mented (Gent and Hamed, 1977; Kendall, 1971; Thouless and Jensen, 1992; Williams, 1993, 1997).

Although the peel test offers a simple test geometry for measuring bond fracture strength, it still suffers from

several problems. The most severe one is that if the coating is thin and the adhesion is strong, the coating

may tear due to the high membrane/bending stresses at the debond tip or contact with the mechanical grips

(Lai and Dillard, 1996, 1997; Wan et al., 2003).

One possible remedy to reduce the local stress concentration is to use low angle peel tests, as they in-

crease the likelihood of debonding without film rupture or yielding (Gent and Kaang, 1986; Wan, 1999).

One example of a low angle peel test is the pulloff test introduced by Gent and Kaang (1986). In this test,
two opposite ends of the film are adhered to the sides of an opening in the substrate, while the other two

edges remain free. An external line force is then applied via a horizontal bail underneath the film, so that the

load is evenly distributed along the film width and the film deforms into inverted ‘‘V’’ shape. Gent and

Kaang only considered the pull-off test for a thin flexible coating under pure stretching. Referring to this

geometry as the V-peel test, Wan (1999) developed a closed form analytical solution of load vs. deflection

by generating a parametric plot using the concomitant membrane stress as the independent variable. This

model can account for the entire deformation range of the thin film, from bending plate to stretching

membrane, in the absence of residual stress. Furthermore, the mechanics of thin film delamination from the
rigid substrate and the corresponding strain energy release rate was derived without residual stress.

In this paper, we first discuss the load–deflection constitutive relation for the pull-off test considering

tensile residual stress in the film, because many polymer coatings are pre-stressed in tension due to thermal

misfit strains when cool down from the cure temperature (Yu and Hutchinson, 2003). Residual stresses also
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constitute a driving force for interfacial delamination and assist in the delamination process. An accurate

closed-form analytical solution for calculating the strain energy release rate at various residual stresses is

also developed from the constitutive relation using a fracture mechanics approach. In order to verify our

analytical model, a two-dimensional geometrically nonlinear FEA is also carried out to simulate the pull-off
test, and the energy release rate is obtained numerically by using the modified crack-closure method

(MCCM) (Rybicki and Kanninen, 1977; Raju et al., 1988; Sun and Qian, 1997). Finally, the contributions

of two fracture modes, the opening mode and sliding mode, with the deflection and residual stress of the

thin film, is investigated based upon FEA results.
2. Theory

In this section, we will present the analytical solution of both the constitutive relation (load vs. deflec-

tion) and delamination (strain energy release rate) considering the residual stress within the film.

2.1. Constitutive relation

As schematically shown in Fig. 1, a thin film of length, 2‘, thickness, h, Young�s modulus, E, and
Poisson�s ratio, m, is pre-stressed by a uniform tensile residual stress of rr and adhered to a rigid substrate.

Since film thickness and film length are considered much smaller than the width of the strip, a plane strain

state is considered. An external load, F , is applied to the centerline of the strip via a horizontal bail of small

cross-sectional radius, deflecting the film into an inverted ‘‘V’’ shape under a mixed bending/stretching

mode. The film profile is denoted by wðxÞ with a central deflection of w0. When the slope of the film is small,

the corresponding governing equation is given by Wan et al. (in press)
F

d2w
dx2

� N
D
w ¼ � F

2D
x�M0

D
ð1Þ
where x is the distance from one clamped end, D ¼ Eh3=12ð1� m2Þ is the flexural rigidity, M0 ¼ M jx¼0 is the

bending moment per unit width at one clamped end, and N is the resultant membrane force per unit width

in the film, which is given by
N ¼ rh ¼ ðrm þ rrÞh ð2Þ
where r is the resultant membrane stress and rm is the concomitant stress caused by the film deformation.

The boundary conditions for this pull-off test are: (i) w ¼ dw=dx ¼ 0 at x ¼ 0 and (ii) dw=dx ¼ 0 at x ¼ ‘.
For the sake of convenience, a set of useful dimensionless variables are defined as follows: n ¼ x=‘,
F

x
w

w

ig. 1. Schematic of the pull-off test (w0 is the central deflection. The film width is assumed to be much larger than 2‘.).
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x ¼ w=h, / ¼ F ‘3=2Dh, bm ¼ ðrmh‘2=DÞ1=2br ¼ ðrrh‘2=DÞ1=2, and b ¼ ðrh‘2=DÞ1=2 where b is the dimen-

sionless resultant membrane stress and b2 ¼ b2
r þ b2

m from Eq. (2). Here b gauges the ratio of the resultant

membrane stress to bending moment. After introducing the boundary conditions mentioned earlier, the

deformed normalized film profile is
Fig. 2.

analyt

asymp
x ¼ /

b3

�
� sinhðbnÞ þ cosh b� 1

sinh b
½coshðbnÞ � 1� þ bn

�
ð3Þ
with a normalized central deflection given by ðn ¼ 1Þ
x0 ¼
/

b3
b

�
� 2 tanh

b
2

�
ð4Þ
Wan et al. (in press) showed that an easy way to find the constitutive relation is to generate a parametric

plot of /ðbm; brÞ vs. x0ðbm; brÞ by varying the parameter bm. Fig. 2 shows /ðx0Þ as solid lines for fixed

values of br ¼ 0, 5, 10, and 20.

Wan (1999) also showed that when bm ! 0ðb � brÞ, x0 is small and bending predominates. At this stage,
/ increases linearly with x0. Thus, Eq. (4) is simplified to
/ ¼ kðbrÞx0 ð5Þ
where
kðbrÞ ¼
b3
r

br � 2 tanh br
2

ð6Þ
Eq. (5) will reduce to / ¼ 12x0 in the absence of residual stress ðbr ¼ 0Þ. The film becomes stiffer with an

increase of residual stress, and corresponds to a larger stiffness, k, and an upward shift of the /-intercept in
Fig. 2 (in log–log scale, all the curves at this stage are parallel to each other). It should be kept in mind that

at large br the film deformation is dominated by the stretching residual stress instead of the bending

moment, leading to a profile similar to that of pure stretching even at small deflection. We will discuss the

effect of residual stress on the film profile in detail later in Section 4. On the other hand, if bm is very large
and x0 is also large, the residual stress becomes negligible compared to the overwhelming concomitant

stress, bm � br, and b � bm. In this case, the constitutive relation approaches the stretching ‘‘cubic limit’’
1
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/ ¼ 6x3
0, which is independent of br. In other words, all /ðx0Þ with any br converge to the same asymptote

cubic line as shown in Fig. 2.

For an intermediate bm, the deformed film is in the linear–cubic (bending–stretching) transition range.

The linear to cubic transition location is estimated to occur at the intersection of the large x0ð/ ¼ 6x3
0Þ and

small x0 (Eq. (5)) given by
x�
0 ¼

b3
r

6ðbr � 2 tanhðbr=2ÞÞ

� �1=2
ð7Þ
Fig. 3 shows the increase of x�
0 with br and the value of x�

0 serves as a rough guide to determine whether

the linear or cubic /ðx0Þ is a better approximation. For br ¼ 0, this transition occurs at x�
0 ¼

ffiffiffi
2

p
� 1:414

and / ¼ 12
ffiffiffi
2

p
� 16:97.

2.2. Fracture mechanics of delamination

2.2.1. No residual stress case

When the central deflection or the applied force reaches a threshold, delamination occurs. The elastic

strain energy, Ue, for a pull-off test is given by
Ue ¼
Z w0

0

F dw0 ð8Þ
Since F ¼ 2Dh/=‘3 and w0 ¼ x0h, Eq. (8) can be rewritten as
Ue ¼
2Dh2

‘3

Z x0

0

/dx0 ð9Þ
Since br ¼ 0, b ¼ bm, / ¼ /ðbmÞ, and x0 ¼ x0ðbmÞ. We have
Ue ¼
2Dh2

‘3

Z bm

0

/ðb0
mÞ

dx0

db0
m

db0
m ¼ 2Dh2

‘3
UðbmÞ ð10Þ
where
UðbmÞ ¼
Z bm

0

/ðb0
mÞ

dx0

db0
m

db0
m ð11Þ
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Fig. 3. Linear to cubic transition nondimensional deflection at various br.
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The energy release rate, G, under a fixed displacement (central deflection, dw0 ¼ 0) is defined as
Fig. 4.

are sh
G ¼ � dUe

dA

����
W0

¼ � dUe

2d‘

����
W0

ð12Þ
where A ¼ 2‘ for the thin film strip per unit width.

Substituting Eq. (10) into (12), one obtains
G ¼ 3Dh2

‘4
UðbmÞ �

Dh2

‘3
dUðbmÞ
dbm

dbm

d‘
ð13Þ
Since dx0 ¼ 0 and x0 ¼ x0ðbmÞ, dbm ¼ 0. It follows that the second term of Eq. (13) vanishes. Thus, the

strain energy release rate in the absence of residual stress is
G ¼ 3Dh2

‘4
UðbmÞ ð14Þ
For the sake of convenience, a normalized energy release rate, v, can be defined such that
v ¼ G=ðFW =2‘Þ ¼ 3UðbmÞ
/x0

ð15Þ
From Eq. (15), the normalized energy release rate, v, is only a function of bm. Therefore, vðx0Þ and vð/Þ can
also be generated by parametric plots with respect to bm, as shown in Figs. 4 and 5, respectively.

When the central deflection is small compared to the film thickness, as mentioned before, the constitutive

relation is linear and / ¼ 12x0. It can easily be shown from Eqs. (11), (14) and (15) that v ¼ 1:5. On the

other hand, if the central deflection is very large compared to the film thickness, the cubic membrane
behavior will be dominant, and the corresponding constitutive relation turns out to be / ¼ 6x3

0. In this

case, it can also be shown that v ¼ 0:75, which coincides with the solution given by Gent and Kaang (1986).

2.2.2. Tensile residual stress case

Since many polymer thin films are subjected to tensile residual stresses, effects of residual stress need to

be considered for thin film delamination. The elastic strain energy, Ue, for a pull-off test with fixed tensile

residual stress, rr, is given by
Ue ¼
2Dh2

‘3
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0
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where
Cðbm; brÞ ¼
Z bm

0

/ðb0
m; brÞ

ox0ðb0
m; brÞ

ob0
m

db0
m ð17Þ
Since br ¼ ðrrhl2=DÞ1=2, at fixed rr, it can be shown that
dbr

d‘
¼ br

‘
ð18Þ
The corresponding strain energy release rate is
G ¼ � dUe

dA

����
x0

¼ 3Dh2

‘4
Cðbm; brÞ �

Dh2

‘3
dCðbm; brÞ

d‘

¼ 3Dh2

‘4
Cðbm; brÞ �

Dh2

‘3
oC
obr

dbr

d‘

�
þ oC
obm

dbm

d‘

� ð19Þ
where
oC
obr

¼
Z bm

0

o /ðb0
m; brÞ

ox0ðb0m;brÞ
ob0m

h i
obr

db0
m ð20Þ
and
oC
obm

¼ /ox0ðbm; brÞ=obm ð21Þ
Since x0 ¼ x0ðbm; brÞ, at fixed x0,
dbm ¼ � ox0=obr

ox0=obm

dbr ð22Þ
Substituting Eq. (22) into Eq. (19), we have
G ¼ 3Dh2

‘4
Cðbm; brÞ �

Dh2

‘3
oC
obr

dbr

d‘

�
� oC
obm

ox0=obr

ox0=obm

dbr

d‘

�
ð23Þ
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Substituting Eqs. (18) and (21) into Eq. (23),
G ¼ 3Dh2

‘4
Cðbm; brÞ �

Dh2

‘4
br

oC
obr

�
� /

ox0

obr

�
ð24Þ
Eq. (24) indicates that the energy release rate is a function of thin film deformation, bm, residual stress, br,

half of debond length, ‘, material properties, such as E and m, and film thickness, h. Therefore, the nor-

malized energy release rate, v, is given by
v ¼ G=ðFW0=2‘Þ ¼
3C
/x0

� br

oC=obr

/x0

þ br

ox0=obr

x0

ð25Þ
When the residual stress is equal to zero, Eq. (25) simplifies to Eq. (15) for the case with no residual stress.

Since C, /, x0 are all functions of bm and br, v is also a function of bm and br. Therefore, vðx0Þ and vð/Þ
can be generated by parametric plots with respect to bm at various br as shown in Figs. 4 and 5, respectively.

For bm ! 0, b � br, both / and x0 are small, and /ðx0Þ is linear. Substituting Eq. (5) into Eq. (25),
v0 ¼
br tanh

2ðbr=2Þ
2br � 4 tanhðbr=2Þ

ð26Þ
which determines the downward shift of v0 in Figs. 4 and 5 with the increase of br. Note that 1=26 v0 6 3=2
with the lower and upper limits corresponding to br ! 1 and br ¼ 0, respectively. In the limit of bm ! 1,

bm � br, and b̂b � bm, both x0 and / are large. Therefore, /ðx0Þ is essentially cubic and v approaches

v1 ¼ 3=4, regardless of br. An intermediate bm � br requires v to fall between v0 to v1 and the linear–cubic
transition shifts to a higher x0 and / as br increases.
3. Finite element analysis

In order to verify the preceding analytical models of the constitutive relation and the energy release rate,

a geometrically nonlinear FEA was conducted using the commercial general FEA package ANSYS�. In the

FEA model, the substrate was modeled as a rigid body and was not subject to any deformation because the

thickness and stiffness of the substrate are generally much greater than those of the film. A linear elastic
model of a generic polymer with E ¼ 3:4 GPa and m ¼ 0:32 was used for the thin film. The ratio between the

debond length, 2‘, and the film thickness, h, is equal to 100 (4000 lm/40 lm) to simulate the actual ge-

ometry of thin films being studied in our laboratory. Taking advantage of the symmetry of geometry and

assuming the width of the film to be much larger than the film thickness, a geometrically nonlinear, two-

dimensional plane strain FEA model was generated for half of the test geometry to characterize the full

deformation range of the thin film behavior from pure bending to pure stretching at various residual stress

levels. A total of 6300 four-node isoparametric elements were used in this analysis and the mesh near the

delamination front is shown in Fig. 6. Biased meshes were constructed except for the regions near the
delamination front and the applied load to save memory space and computing time without losing accu-

racy. Different tensile residual stresses were introduced by first subjecting the thin film to uniform tem-

perature changes. Basically, the FEA simulated fixed displacement condition and the central displacement,

w0, was varied from 0.1 to 10 h to cover the full deformation range. For each specific central deflection, w0,

the corresponding force was obtained by the reaction force at the same node.

In order to extract the energy release rate, the MCCM (Rybicki and Kanninen, 1977; Raju et al., 1988;

Sun and Qian, 1997) was employed based on Irwin�s theory (1958) that if a crack extends by a small amount,

D‘, compared to the original crack length, ‘, the strain energy released in this process is equal to the work
needed to close the crack to its original length. In terms of the finite element representation, we have
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G ¼ GI þ GII ð27Þ

GI ¼ � 1

2D‘
Fiy � Dmj ð28Þ

GII ¼ � 1

2D‘
Fix � Duj ð29Þ
where Fix and Fiy are the shear and opening forces at node i, and Duj and Dmj are the shear and opening

displacements at node j as shown in Fig. 7. Results of the constitutive relation and the energy release rate

from the FEA have been shown in the corresponding graphs presented above, such as Figs. 2, 4 and 5, to

allow comparisons with the analytical solutions. Obviously, the analytical results for both the constitutive

relation and the energy release rate are in excellent agreement with the FEA data.
4. Discussion

4.1. Insights of thin film deformation from pull-off test

The analytical solutions proposed herein for the pull-off test geometry are useful for characterizing the
constitutive behavior and interfacial delamination of thin films. This model captures the full deformation
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range of thin films spanning from linear plate bending to cubic membrane behavior, including a smooth

transition between these two limiting regimes. The plane strain solutions are presented here assuming that

the width of the strip is large compared to the thickness of the film, and the plane stress solutions can be

easily obtained as well by replacing E0 (i.e. E=1� m2) by E (i.e. D by Dð1� m2Þ).
In order to derive the constitutive relation and the energy release rate, parametric plots are used to

circumvent the involved mathematics for solving the transcendental equations. The normalized applied

load, /, the normalized central displacement, x0, and the normalized energy release rate, v, are all functions
of the normalized membrane stress, bm and the normalized residual stress, br.

Residual stresses play an important role in both the constitutive relation and the energy release rate. At

small deflections, increasingly tensile residual stresses serve to make films stiffer due to the additional re-

storing force resulting from the residual stress. Fig. 2 also shows that at large residual stress the transition

to cubic stretching-dominated regime is delayed since the deformation related stress, bm, must be large
enough to dominate the residual stress br. With the increase of deflections, residual stress effects become less

pronounced and finally all the constitutive curves approach the same asymptote, which is the cubic

stretching limit given earlier.

The normalized energy release rate, v, is defined as the ratio of the applied energy release rate, G, to a

work-like term, Fw0, divided by a characteristic length dimension. For the pull-off test geometry without

residual stress, v ranges from 3/2 in the linear region to 3/4 in the cubic stretching region, which is consistent

with Gent�s solution (1986). As shown earlier, when the deflection is very small, v varies from 1/2 to 3/2

depending on the residual stress within the film. On the other hand, the residual stress does not significantly
affect v at large displacements and v approaches 3/4 eventually, regardless of the value of the residual stress

because the membrane stress prevails at large deflections.

4.2. Comparison between analytical solutions and FEA

Fig. 2 shows that the constitutive relations obtained by the analytical solutions agree very well with the

FEA results for the whole deformation region at various residual stresses. Since a small angle assumption is

included in the analytical solutions, we expect that larger deviation of analytical solutions from FEA results

could occur at larger deflections. For example, when the normalized central deflection, x0, is equal to 10,

the relative deviations of the normalized load, /, from FEA results are only 0.4% without residual stress

and 0.6% for br equal to 20.
In order to distinguish the bending and stretching state of thin films directly, and check the accuracy of

the analytical model for the pull-off test geometry at different central deflections and residual stresses, the

deflection profiles are obtained from both analytical solutions and FEA. Fig. 8 shows a comparison of the

normalized thin film deflection profiles for the analytical solutions and FEA results at three normalized

central deflection values without residual stress. Fig. 9 shows the comparison for br ¼ 20. Fig. 8 indicates

that when there is no residual stress within the film and the central deflection is small compared to the

thickness of the film (i.e. x0 ¼ 0:1), the deflection profile is sigmoidal in shape implying that the bending

effects are quite significant. With an increase of the central deflection, the shapes of profiles change from
sigmoidal to a straight line, showing increasing cubic stretching effects and decreasing bending effects,

which agrees with our analytical solutions given earlier. Interestingly, Fig. 9 shows that if the thin film is

pre-stressed by the tensile residual stress, even when the central deflection is very small compared to the film

thickness, the shape of the profile already approximates a straight line because of the stretching residual

stress effect. We should keep in mind that this stretching effect due to the tensile residual stress is different

from the cubic stretching effect mentioned earlier, because the former is linear in terms of load vs. deflection

and the later is cubic caused by the large film deflection.

Figs. 4 and 5 show the normalized energy release rate, v, from both analytical solutions and FEA.
Obviously, excellent agreement is achieved at various residual stress values, and residual stress effects are
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significant at small deflection range and control the shift of the curves. On the other hand, residual stress
effects diminish with the increase of the load or deflection and eventually the values of v at all different
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residual stresses approach the membrane solution given by Gent and Kaang (1986) and Williams (1997).

Again at a normalized central deflection, x0, equal to 10, the relative deviations of v from FEA results are

only 0.1% without residual stress and only 0.05% for br equal to 20.
4.3. Fracture mode analysis of pull-off test

In our FEA model using the MCCM, we can also extract the individual strain energy release rates, GI

and GII from Eqs. (28) and (29) under a finite crack extension (Sun and Qian, 1997). Fig. 10 shows GI and

GII vs. central deflections at various br. Obviously, both mode I and mode II energy release rates increase

monotonously with the central deflection, and at the same deflection, higher residual stress accounts for

higher energy release rate. At one specific br, mode II always dominates mode I and this scenario becomes

more and more significant with the transition of film deformation from linear regime to cubic stretching

regime. If there is no elastic mismatch between the film and substrate, i.e., the Dundurs� parameters, âa and

b̂b, are both equal to zero, the phase angle W is given by W ¼ tan�1ðKII=KIÞ ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GII=GI

p
. Fig. 11 shows

the phase angle change at various residual stresses. The phase angle also increases monotonically with the
central deflection, which confirms the increasing dominance of mode II when the film approaches the cubic

stretching regime. With an increase of residual stress, the mode ratio increase is delayed due to residual

stress effects. Generally speaking, for the peel test, both the local moment and membrane force near the

crack tip contribute to the energy release rate given by Hutchingson and Suo (1992). Since the pull-off test is

a low angle peel test, the continuously increasing membrane force caused by the pull-off test will contribute

primarily to mode II fracture and this effect will become dominant once the film enters the cubic stretching

regime. It is also worthwhile to mention that the effect of residual stress on fracture modes diminishes when

the deflection is large, because in the cubic stretching region, bm dominates br and the residual stress is
overshadowed by the membrane stress.
5. Conclusions

A closed-form analytical solution for the interfacial delamination is developed for the pull-off test. The

solutions accurately predict the full deformation of thin films ranging from linear bending to cubic

stretching and coincide with the two limiting cases: linear load–deflection behavior when bending or large
residual stresses dominate, and cubic behavior where stretching is dominant. Since this model can also
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capture the transition region, the constitutive solution and the derived deflection profile are not only useful

in modeling the behavior of films, coatings, or tapes subjected to this test geometry, but also may be

employed to determine residual stresses and material properties.

An accurate closed-form solution for the strain energy release rate is derived based upon the constitutive
solution using a fracture mechanics approach. Both the constitutive solution and the energy release rate

solution are shown to agree very well with the FEA results at various residual stress values. The analytical

model and FEA show that residual stresses play an important role in both the constitutive relation and the

energy release rate, and the effects become less pronounced when the deformation of the film approaches

the cubic stretching region, where the membrane stress dominates the residual stress. Finite element

analysis results suggest that the mode II energy release rate is dominant as far as the test geometry and the

deformation region are considered, and this fracture mode analysis could be useful for studying mixed-

mode thin film delamination problem.
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